100 research outputs found

    A Model of Computation for Reconfigurable Systems

    Get PDF
    The dissertation introduces RecDEVS, a model of computation for reconfigurable hardware systems. Existing computational models for conventional hardware structures are not suited very well to model the dynamic behavior of reconfigurable systems. This work first systematically investigates the requirements that are necessary to properly model reconfigurable systems. Then, the Discrete Event System Specification (DEVS) formalism is extended into RecDEVS, a formalism capable of modeling reconfigurable systems. It is then demonstrated how RecDEVS can be utilized to do a a model based design flow that eases system verification

    The track finding algorithm of the Belle II vertex detectors

    Get PDF
    The Belle II experiment is a high energy multi purpose particle detector operated at the asymmetric e+e-- collier SuperKEKB in Tsukuba (Japan). In this work we describe the algorithm performing the pattern recognition for inner tracking detector which consists of two layers of pixel detectors and four layers of double sided silicon strip detectors arranged around the interaction region. The track finding algorithm will be used both during the High Level Trigger on-line track reconstruction and during the off-line full reconstruction. It must provide good efficiency down to momenta as low as 50 MeV/c where material effects are sizeable even in an extremely thin detector as the VXD. In addition it has to be able to cope with the high occupancy of the Belle II detectors due to the background. The underlying concept of the track finding algorithm, as well as details of the implementation are outlined. The algorithm is proven to run with good performance on simulated Y (4S) â\u86\u92 BB events with an efficiency for reconstructing tracks of above 90% over a wide range of momentum

    Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at √s=13 TeV

    Get PDF
    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb−1 of proton-proton collisions at s√=13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500–1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980–1200 GeV are excluded depending on the mass of the next-to-lightest neutralino

    Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of protonproton collision data collected at p s = 13TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb1. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simpli ed models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180GeV and 1150 GeV are excluded at 95% CL. These results signi cantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations.Sponsoring Consortium for Open Access Publishing in Particle Physic

    Domain-specific Design Space Exploration and Variant Selection Methods for High-Performance Cryptographic Engines

    No full text
    We present an generator-based approach for efficient design space exploration and high-level synthesis of cryptographic designs. It allows the directed search for new algorithmic variants. The approach combines high-level synthesis features like automated scheduling and allocation with performance considerations down to the register-level which are crucial for the performance of cryptographic designs. We demonstrate the feasibility of this approach on an cryptographic algorithm based on elliptic curves

    A System Level Design Flow for Embedded Systems based on Model of Computation Mappings

    No full text
    This paper describes an embedded systems design flow containing Models of Computation (MoC). We thoroughly survey the different abstraction layers and detail a modeling hierarchy for a MoC-based design flow. Thus, we outline different MoC-classes where the MoCs can be transformed horizontally into each other and successively transformed vertically down to SystemC. Therefore, our proposed design flow can benefit both from MoC specific properties and the features of an advances SystemC environment. The feasibility of our approach is demonstrated by the transformation of the Discrete Event Specified Systems model (DEVS) into SystemC for a complex real life design

    Novel hardening techniques against differential power analysis for multiplication in GF(2 n

    No full text
    Side channel attacks have changed the design of secure cryptosystems dramatically. Today a reasonable designed cryptosystem has not only to be cryptographically secure, but resistant against side channel attacks as well. Therefore, a lot of countermeasure techniques have been developed in the last years to avoid exploitable information leaking. In this paper we introduce a new approach to secure the multiplication in GF(2^n), an essential operation of elliptic curve cryptography, against differential power analysis attacks. Our hiding technique improves the resistance of a multiplier, even if the attacker has strong knowledge about its architecture. It is scalable and allows to choose arbitrary trade-offs between performance and side channel resistance. The additional costs to secure the multiplier are very low compared to other countermeasures

    Dynamically Reconfigurable Systems - Architectures, Design Methods and Applications

    No full text
    We introduce new concepts of countermeasure approaches against differential power analysis attacks to an essential operation of elliptic curve cryptography in GF(2^n). Similar to many other published countermeasures we are focusing on the architecture layer to secure the cryptographic operations. This type of countermeasures is geared to the well-known hiding methods in this research field, but we apply them on a different implementation layer. For securing the multiplication over GF(2^n), an essential operation in elliptic curve cryptography, we propose a countermeasure, which is highly scalable and thus allows to select arbitrary trade-offs between performance and side channel resistance

    SC-DEVS: An efficient SystemC Extension for the DEVS Model of Computation

    No full text
    This paper describes a systematic approach to integrate the Discrete Event Specified System (DEVS) methodology into SystemC. It thus combines Model of Computation (MoC) specific properties and the features of an advanced SystemC environment. The execution of abstract system level DEVS models is comparable to pure SystemC models and is significantly faster compared to other DEVS environments. Thus, system level models based on abstract MoCs may easily be executed in a SystemC environment. The proposed integration is realized as a non-introspective extension to the SystemC 2.2 kernel. The DEVS models are implemented on an additional software layer above the SystemC simulation kernel. Our approach may be used simultaneously with other layered extensions, e.g., SystemC-AMS or TLM
    corecore